
3 Stories

3 preliminaries


1. Ricardo as co-author - need approval plus plausible deniability for my side comments.

     Anything smart is his,  anything smartass is mine

2.  preliminary, on-going work,  not a neat definite conclusion

3. Approved by no NOAA climate committee, or any NOAA org.


Weaving together 3 stories  (if 3 are not enough, these go to 11) :


1 How you look at the data, whether you assume stationarity or not,  level-crossing vs. dynamic change, matter.


2.  Warming off the west coast 2006-2016,  blobs everywhere


3. A new algorithm to do hi-resolution and multi-resolution space-time analysis on a laptop. Algorithm is intellectual property of Climate Corporation.  Nothing here that 
isn’t covered in a an approved talk at ISBA last summer.
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Methods Influences Story 

The Methods we choose to use can affect the story we tell from the data.


Story 1:  The top left shows a level crossing as often presented,  here saying the change was in 1976.  The upper right shows the same series without all the coloring,  
and we see warming started in 1972 and ended in 1984.  1976 is the mid-point of that change,  and has no physical meaning.  Why other series don’t line up with it - if 
the changed in 1972,  different times to cross mean level,  Bottom series shows real example.


Moreover, anomalies as usually calculated assume stationarity - a very crude seasonal filter.  Can leave power in the seasonal frequencies (at best) or at worse leak into 
other frequencies. And a ton of parameters are being estimated  (seasonal means at each location) which given the large amount of autocorrelation tend to be very 
unstable,  and they are estimated without any sort of regularization.  


Don’t hear much about 1976 anymore.  good example of this.  it is not just about scoring statistical points.  If we are trying to understand the processes,  it matter greatly 
if we look at 1976, rather than 1972 and 1984,  and more so because even if controlled by the same processes, different series will have mean crossings at different 
times.


Besides being lazy and re-using slide, there is a reason for using this particular example


Also pseudo replication



Pseudoreplication

filtered state = predicted state + gain*(predicted error)

gain approximately  Process Noise/Measurement Noise

Last term roughly new information in the data point

Bartlett’s Correction - (1/n) * (1 + p2)/(1-p2) 
for p = .8, variance is 4.5 times bigger

Pseudoreplication clear to many people in spatial context - say but 50 sensors in my office to find out about temperature change over time - do not have 50 
observations.  If I took the ohs from one sensor and just duplicated them 50 times,  people would cry foul, but not a lot different other than intent.

But same issues in time,  though maybe not as obvious.  In iid case,  best that can be predicted is the mean,  so the information value is MSE,  but in non iid case, can be 
very little new info in the data point.


Many examples out there, that treat dependent data as iid.  Maybe 30%-40% supposed explain variance in “fit”,  then used for prediction.  The predictive accuracy is 
likely much much less.  But it makes for pretty maps.


For the Bayesians out there  (though the comments are true whether in Bayesian for  Frequentist context),  think of it as issues of shrinkage and regularization  (see 
McElreath)


For, if we do not supplement the maximum likelihood method with some prior information about which hypotheses we shall consider reasonable, then it will always lead 
us inexorably to favor the ‘sure thing’ hypothesis HS, according to which every tiny detail of the data was inevitable; nothing else could possibly have happened.


Jaynes, E. T.. Probability Theory: The Logic of Science: Principles and Elementary Applications Vol 1 (p. 195). Cambridge University Press. Kindle Edition.
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Where Did the Blob Go?

Story 2.  How can the blob disappear suddenly?


Sent by Skip Albertson,  longtime data user.  What is doing in April?  Where did the blob go?  Ask if bias in seasonal, or shift?  Possible that big shift in warming in one 
month,  but unlikely, but let’s look at daily anomalies



Where Did the Blob Go?

We were worried we had done something wrong.  Ryan Belcher and Dale Robinson of our group made a movie of the daily anomalies.

A movie showing the daily MUR anomalies.  We see the same behavior,  on very short time scales.  What can explain that?



blob

Ricardo Lemos

February 25, 2017

Roy, based on your hypothesis that there’s an underlying trend and a seaonal shift, I built a time series
that tries to capture the gist of the patterns in the movie: starting from a cool ocean in early 2013, I
inserted a warming trend (0.8 C / yr) and a slowly changing seasonal (0.5 months / year). Because of the
shifting seasonal, the SST in late 2014 is about one month behind of the climatology. This shows up in
the anomalies as a cyclical anomaly, with minimum in winter. Once you add the trend, you get year-round
positive anomalies in 2015.
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Start with cool 2013 
Add warming trend (0.8C/yr) 
Add slowly changing seasonal (0.5 months/yr) 
Year-round positive anomalies by 2015

Trend + Seasonal Phase Shift

One possibility for what we are seeing is an overall warming trend,  with a stronger change in the seasonality, particular in certain regions.  Here the assumption is just 
that the phase of the seasonal  shifts in time,  but now imagine if the shape of the seasonal cycle is changing,  so for some part of the season it is below the climatology 
and some part it is above.


We will come back to this.



1 2 3

−124 −120 −116 −124 −120 −116 −124 −120 −116

32

36

40

lon

la
t

The periods object is pretty simple: we’re working with a baseline/trend (period = 0), an annual cycle
(period = 365), a 6-months cycle (period = 182.5), and a 4-month cycle (period = 121.67).

The time object is also straightforward: it’s a vector of size 3650 with daily dates, in POSIXct format, from
Jan 1, 2006 until Dec 31, 2015. Leap days (Feb 29, 2008 and 2012) have been removed, so that all years have
365 days.

Lastly, the object posterior.mean is the most complex one. It’s a list with 3650 items (time); each item is a
matrix with 1793 rows (gridpoints) and 7 columns (1 trend + 6 cycles). It’s important to remember that
these posterior means are not measured in Celsius. Only after we run a discrete process convolution on them,
and multiply the cyclical components with sines and cosines, do we get actual temperatures. So let’s do this
for an arbitrary location, 33.0 N, -124 E. You can change this to any other point in the domain. You can
also use all grids (use = 3), just the two coarsest (use = 2), or just the coarsest (use = 1).
mypoint <- c(33, -124)
use <- 3

And now let’s convert the means into estimates for that location.
distances <- sqrt((mypoint[1] - gridpoints[,1]) ^ 2 +

(mypoint[2] - gridpoints[,2]) ^ 2) /
(2 * c(rep(0.1952797, 1624), rep(0.7811189, 147), rep(3.124475, 22)))

kernel <- (1 - distances ^ 2) ^ 2 * (distances < 1)
endp <- switch(use, �1� = 1772:1793, �2� = 1625:1793, �3� = 1:1793)
tvec <- 1:3650
osci <- lapply(1:3650, FUN = function(tt) {

i <- (tt - 1) %% 365 + 1
c(1, as.numeric(mapply(1:3, FUN = function(f) {

c(sin(2 * pi * i * f / 365), cos(2 * pi * i * f / 365))

2

Multiresolution Model

Story 3:  Multi-resolution space-time analysis with seasonals that can vary in phase and amplitude


Many space-time analyses start by setting up a grid  (like knots in 1d splines),  putting a process at each knot,  as well as a “convolution kernel” that describes the spatial  
influence of the process at that knot.  The process at each knot,  can have a changing mean,  and seasonal components with changing phase and amplitude.  But what 
resolution to use for the grid.  Suppose we can do multiple resolutions at once, for very large datasets  (say 1 million observation points), and can do Bayesian or 
frequentist analysis, and do so on a laptop?  This is the basis of an algorithm by Ricardo deLemos.  The algorithm is the intellectual property of The Climate Corporation, 
but we applied it to 10 years of daily MUR data (1km resolution) essentially on a 10-degree square.


Why multiresolution - process often occur at a given resolution, adding finer resolution just adds noise.  For example,  many algorithms for estimating fronts first do 
spatial smoothing,  because fronts do not occur just at a fine-scale resolution,  and the finer-scale behavior is “noise” in terms of identifying the front. For the Bayesians,  
you can see this as a regularization or shrinkage or partial pooling.


There is a paper on this algorithm,  my name added on the end. May never see the light of day.  Ricardo had some fundamental insights on how to do the calculations,  I 
had some fundamental insight into how to choose smart colleagues.




Right Location?

Area we initialed studied was not aimed at the blob,   more interested in upwelling and related processes.  But given Skip’s query,  thought we would take a look to see 
what we could say about things going on in the NE Pacific.


Is the area that we have studied actually catching the blob?  Some periods yes,  some periods no, so this should be a caveat to what will be shown.  Recoding the 
algorithm and will go back and look at a wider area.  Modeling was originally done for a different purpose,  this came up after looking at the results and the inquiry from 
Skip.  
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Trend Posterior Mean

This shows the raw trends estimated from the model along a selected grid throughout the region.   As we will see in more detail,  starting around 2012 (maybe even 
earlier),  there is warming everywhere,  and at about the same amount.  But the amount of change may be affected by the mean level.



30

33

36

39

−127.5 −125.0 −122.5 −120.0 −117.5

Scaled Trend Posterior Mean

These are the scaled trends,  so all series have mean zero and variance 1.  The similarity of the upward trend is seen even more clearly.



Trend Clusters

We can try to summarize the trends more by clustering the trends.  Here we cluster using CORT as a measure of distance  (which tries to capture both shape and shift) 
and pam for the clustering, with 6 clusters.  The mean trend in each cluster is shown - not much difference in the critical period of blob.



Scaled Trend Clusters

Here we do the same clustering on the scaled trends.  Again the warming is region wide,  and at about the same level.



Sum of Seasonals
 Cluster

Here we clustering the sum of the seasonal components,  there are significant differences in the region, and significant time dependent change.  But unscaled seasonals 
can cluster together based on areas that have more variation in the seasonal,  not the change in the seasonal



Sum of Scaled
Seasonal Cluster

Here are the scaled seasonals,  again showing significant temporal variability.



Seasonal Cluster 1
Yearly Pattern

We look at the seasonals in each cluster in a manner that shows more clearly the shift in the year to year pattern. 



Seasonal Cluster 2
Yearly Pattern

As before,  but for cluster 2.



Seasonal Cluster 3
Yearly Pattern

As before,  but for cluster 3.



Seasonal Cluster 4
Yearly Pattern

As before,  but for cluster 4.



Seasonal Cluster 6
Yearly Pattern

As before,  but for cluster 5.



Seasonal Cluster 6
Yearly Pattern

Cluster 6.



Scaled Seasonal Cluster 1
Yearly Pattern

Here we do the same for scaled seasonals.  Cluster 1.  The dark line is the mean behavior.  The region of the blob is in this cluster.



Scaled Seasonal Cluster 2
Yearly Pattern

Cluster 2.



Scaled Seasonal Cluster 3
Yearly Pattern



Scaled Seasonal Cluster 4
Yearly Pattern



Scaled Seasonal Cluster 5
Yearly Pattern



Scaled Seasonal Cluster 6
Yearly Pattern



SODA 70m
 Trends

For the other variable to be looked at,  the space-time model was not fit.  Instead a state-space decomposition was fit to each area,  and the resulting components 
clustered.  Here monthly SODA temperature data at 75m depth,  often close to the mix layer depth,   The upscaled trend clusters clearly show the mean effect,  the 
scaled ones not so clearly, but  we see a warming period during the blob,  but not anything out of line with previous values



SODA 70m
Seasonal + Cycle

The season + cycle for the two northern clusters for SODA at 70m.  Again,  while a lot of variability,   the main thing is a big outlier in the late years  during the blob.



SODA 70m Scaled
Seasonal + Cycle

The scaled season + cycle for the two northern clusters for SODA at 70m



Ekman Transport 

 State-space decompositions were fit to daily estimates (averaged over 6-hourly data) of the y component of Ekman transport  (in this region a pretty good measure of 
upwelling,  given the coast angle).  The region closest to the blob is in cluster 5,  and not much in the trend would make 2012-2015 stand out,  The is true for both the 
unscaled and scaled trends.



Ekman Transport
Seasonal + Cycle

Here is the sum of the cyclic terms for Ekman transport which give the seasonal cycle.  The onshore-offshore areas up north are in clusters 2 and 3,  and while there  is 
variability, nothing stands out for the period of the blob



Ekman Transport
Scaled Seasonal + Cycle

Here we look at the scaled seasonal for Ekman transport.  The offshore region doesn’t have much, but the onshore region (cluster 5) shows a persistent increase during 
the early part of the year,  and a decrease later in the year.



Wind Stress Curl 
Trends

Cluster trends for Curl in the region



Wind Stress Curl 
Scaled Trends

Scaled cluster trends in the region



Wind Stress Curl 
Seasonal

Seasonal Cluster 3



Wind Stress Curl 
Seasonal

Zooming in on Curl Seasonal Cluster 3 for more recent years



Wind Stress Curl 
Seasonal

Curl Seasonal Cluster 5



Wind Stress Curl 
Seasonal

Zooming in on Curl cluster 5



Wind Stress Curl 
Scaled Seasonal

Scaled Curl Seasonal Cluster 3



Wind Stress Curl 
Scaled Seasonal

Zooming in on Scaled Curl Seasonal Cluster 3.  The curl seasonal pattern change is consistent with our toy example



. As seen throughout section 3.3, the recurring characteristic spatial relationship between atmospheric and  

. 648  oceanic anomalies in the CNP and NEP indicates that anomalous surface Ekman transports may have  

. 649  contributed to the development of oceanic anomalies. Anomalously positive (negative) wind stress curl  

. 650  should produce anomalous horizontal divergence (convergence) in surface Ekman transport and a shoaling  

. 651  (depression) of SSH and isopycnal surfaces via Ekman pumping. To test this idea, we compared the curl  

. 652  of the wind stress anomalies (shown as the anomaly of the mean of the daily curl fields) and SSHAs during  

. 653  key phases of the EN and LN events of 1995–2001.  

. 683  Several previous studies have indicated that regional atmospheric forcing in the NEP is a major factor  

. 684  in producing oceanic anomalies during EN and LN events (e.g. Mysak, 1986; Simpson, 1992; Cayan, 1992;  

. 685  Miller et al., 1994). The characteristic spatial relationship between wind curl and SSH anomalies in the  

. 686  NEP (Fig. 14) and between anomalies in SLP, low-level winds, and upper ocean temperature (Figs. 6 and  

. 687  8–13) indicate that anomalous Ekman transports may have been important factors in developing oceanic  

. 688  anomalies. Specifically, temperature advection resulting from vertical and horizontal Ekman transport  

. 689  appears to have contributed to upper ocean temperature anomalies in the CNP and NEP.  

Prior to 1997-1998 a similar blob had been sitting offshore 
From Schwing et al 2002

before the 1997-1998 El Nino,  a similar blob of warm water had been sitting off-shore for a year or more.  In progress of Oceanography,  2002,  Schwing et al, 
commented on the possible role of wind stress curl in causing this.


