Get ERDDAP tabledap data.
Anything coercable to an object of class info. So the output of
a call to info()
, or a datasetid, which will internally be passed
through info()
Any number of key-value pairs in quotes as query constraints. See Details & examples
Columns to return, as a character vector
If TRUE
ERDDAP will sort all of the rows in the results
table (starting with the first requested variable, then using the second
requested variable if the first variable has a tie, ...), then remove all
non-unique rows of data. In many situations, ERDDAP can return distinct
values quickly and efficiently. But in some cases, ERDDAP must look through
all rows of the source dataset.
If used, ERDDAP will sort all of the rows in the results
table (starting with the first variable, then using the second variable
if the first variable has a tie, ...). Normally, the rows of data in the
response table are in the order they arrived from the data source. orderBy
allows you to request that the results table be sorted in a specific way.
For example, use orderby=c("stationID,time")
to get the results
sorted by stationID, then time. The orderby variables MUST be included in
the list of requested variables in the fields parameter.
Give a vector of one or more fields, that must be included in the fields parameter as well. Gives back data given constraints. ERDDAP will sort all of the rows in the results table (starting with the first variable, then using the second variable if the first variable has a tie, ...) and then just keeps the rows where the value of the last sort variable is highest (for each combination of other values).
Same as orderbymax
parameter, except returns
minimum value.
Same as orderbymax
parameter, except returns
two rows for every combination of the n-1 variables: one row with the
minimum value, and one row with the maximum value.
One of 'udunits' (units will be described via the UDUNITS standard (e.g.,degrees_C)) or 'ucum' (units will be described via the UCUM standard (e.g., Cel)).
A URL for an ERDDAP server.
Default: https://upwell.pfeg.noaa.gov/erddap/ - See eurl()
for
more information
One of disk
(default) or memory
. You can pass
options to disk
Curl options passed on to crul::verb-GET (must be named parameters)
An object of class tabledap
. This class is a thin wrapper
around a data.frame, so the data you get back is a data.frame with metadata
attached as attributes (datasetid, path (path where the csv is stored on
your machine), url (url for the request))
For key-value pair query constraints, the valid operators are =,
!= (not equals), =~ (a regular expression test), <, <=, >, and >= . For
regular expressions you need to add a regular expression. For others, nothing
more is needed. Construct the entry like 'time>=2001-07-07'
with the
parameter on the left, value on the right, and the operator in the middle,
all within a set of quotes. Since ERDDAP accepts values other than =
,
we can't simply do time = '2001-07-07'
as we normally would.
Server-side functionality: Some tasks are done server side. You don't have
to worry about what that means. They are provided via parameters in this
function. See distinct
, orderby
, orderbymax
,
orderbymin
, orderbyminmax
, and units
.
Data is cached based on all parameters you use to get a dataset, including base url, query parameters. If you make the same exact call in the same or a different R session, as long you don't clear the cache, the function only reads data from disk, and does not have to request the data from the web again.
If you run into an error like "HTTP Status 500 - There was a (temporary?)
problem. Wait a minute, then try again.". it's likely they are hitting
up against a size limit, and they should reduce the amount of data they
are requesting either via space, time, or variables. Pass in
config = verbose()
to the request, and paste the URL into your
browser to see if the output is garbled to examine if there's a problem
with servers or this package
https://upwell.pfeg.noaa.gov/erddap/index.html
if (FALSE) {
# Just passing the datasetid without fields gives all columns back
tabledap('erdCinpKfmBT')
# Pass time constraints
tabledap('erdCinpKfmBT', 'time>=2006-08-24')
# Pass in fields (i.e., columns to retrieve) & time constraints
tabledap('erdCinpKfmBT',
fields = c('longitude', 'latitude', 'Aplysia_californica_Mean_Density'),
'time>=2006-08-24'
)
# Get info on a datasetid, then get data given information learned
info('erdCalCOFIlrvsiz')$variables
tabledap('erdCalCOFIlrvsiz', fields=c('latitude','longitude','larvae_size',
'itis_tsn'), 'time>=2011-10-25', 'time<=2011-10-31')
# An example workflow
## Search for data
(out <- ed_search(query='fish', which = 'table'))
## Using a datasetid, search for information on a datasetid
id <- out$alldata[[1]]$dataset_id
vars <- info(id)$variables
## Get data from the dataset
vars$variable_name[1:3]
tabledap(id, fields = vars$variable_name[1:3])
# Time constraint
## Limit by time with date only
(info <- info('erdCinpKfmBT'))
tabledap(info, fields = c(
'latitude','longitude','Haliotis_fulgens_Mean_Density'),
'time>=2001-07-14')
# Use distinct parameter - compare to distinct = FALSE
tabledap('sg114_3',
fields=c('longitude','latitude','trajectory'),
'time>=2008-12-05', distinct = TRUE)
# Use units parameter
## In this example, values are the same, but sometimes they can be different
## given the units value passed
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),
'time>=2007-09-19', 'time<=2007-09-21', units='udunits')
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),
'time>=2007-09-19', 'time<=2007-09-21', units='ucum')
# Use orderby parameter
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),
'time>=2007-09-19', 'time<=2007-09-21', orderby='temperature')
# Use orderbymax parameter
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),
'time>=2007-09-19', 'time<=2007-09-21', orderbymax='temperature')
# Use orderbymin parameter
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),
'time>=2007-09-19', 'time<=2007-09-21', orderbymin='temperature')
# Use orderbyminmax parameter
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),
'time>=2007-09-19', 'time<=2007-09-21', orderbyminmax='temperature')
# Use orderbymin parameter with multiple values
tabledap('erdCinpKfmT',
fields=c('longitude','latitude','time','depth','temperature'),
'time>=2007-06-10', 'time<=2007-09-21',
orderbymax=c('depth','temperature')
)
# Integrate with taxize
out <- tabledap('erdCalCOFIlrvcntHBtoHI',
fields = c('latitude','longitude','scientific_name','itis_tsn'),
'time>=2007-06-10', 'time<=2007-09-21'
)
tsns <- unique(out$itis_tsn[1:100])
library("taxize")
classif <- classification(tsns, db = "itis")
head(rbind(classif)); tail(rbind(classif))
# Write to memory (within R), or to disk
(out <- info('erdCinpKfmBT'))
## disk, by default (to prevent bogging down system w/ large datasets)
## the 2nd call is much faster as it's mostly just the time of reading
## in the table from disk
system.time( tabledap('erdCinpKfmBT', store = disk()) )
system.time( tabledap('erdCinpKfmBT', store = disk()) )
## memory
tabledap('erdCinpKfmBT', store = memory())
# use a different ERDDAP server
## NOAA IOOS NERACOOS
url <- "http://www.neracoos.org/erddap/"
tabledap("E01_optics_hist", url = url)
}